Hierarchical Dirichlet process model for gene expression clustering
نویسندگان
چکیده
منابع مشابه
Hierarchical Dirichlet process model for gene expression clustering
: Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data...
متن کاملA Hierarchical Dirichlet Process Model with Multiple Levels of Clustering for Human EEG Seizure Modeling
Driven by the multi-level structure of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures, we introduce a new variant of a hierarchical Dirichlet Process—the multi-level clustering hierarchical Dirichlet Process (MLC-HDP)—that simultaneously clusters datasets on multiple levels. Our seizure dataset contains brain activity recorded in typically more than a hundred in...
متن کاملHIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS
One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...
متن کاملMarkov chain Monte Carlo methods for Dirichlet process hierarchical model
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorised into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...
متن کاملModel-Based Clustering for Expression Data via a Dirichlet Process Mixture Model
This chapter describes a clustering procedure for microarray expression data based on a well-defined statistical model, specifically, a conjugate Dirichlet process mixture model. The clustering algorithm groups genes whose latent variables governing expression are equal, that is, genes belonging to the same mixture component. The model is fit with Markov chain Monte Carlo and the computational ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Bioinformatics and Systems Biology
سال: 2013
ISSN: 1687-4153
DOI: 10.1186/1687-4153-2013-5